

Internal gear pump Fixed displacement

Type PGH

RE 10223

Edition: 2019-02

Replaces: 04.2013

Frame	ciza	2	and	2

- Size 5 ... 16
- Component series 2X
- Maximum operating pressure 350 bar
- ▶ Displacement 5.2 ... 16.0 cm³

Features

- Fixed displacement
- Low operating noise
- Low flow pulsation
- High efficiency also at low speed and viscosity due to sealing gap compensation
- Suitable for broad viscosity and speed ranges
- Can be combined with internal gear pumps, radial piston pumps, gerotor pumps and external gear pumps
- ▶ Mounting dimensions according to ISO 3019-1.
- Connection dimensions according to ISO 6162-1
- Suitable for HLP, HETG, HEES and HFD and HFC hydraulic fluids
- Use in fatigue endurable drives with high pressures at very high numbers of load cycles with constant or variable speed in direct drives or with accumulator charging function, e.g.:
 - Plastics processing machines
 - Machine tools
 - Presses
 - Test stands

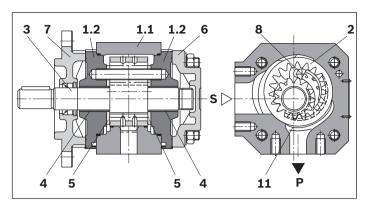
Inhalt	
Ordering code	2
Functional description	3
Technical data	4
Average characteristic curve values of frame	
sizes 2 and 3	5
Dimensions of frame size 2	6
Dimensions of frame size 3	7
Multiple pumps	9
Project planning information	12
Installation information	13
Commissioning information	14

2

Ordering code

01	02	03	04		05	06	07	08	09	10	11
PG	H		- 2X	1		1	1	07	1	U2	11
- 1 G	1	<u> </u>	2/	,				01		02	
Гуре											
01 Inter	nal gear pum	p, fixed displac	cement, gap-com	pensated							PG
Series											
02 High-	pressure pui	mp, peak press	ure 350 bar								Н
Frame siz	es BG										
03 BG2											2
BG3									,		3
Compone	nt series										,
		s 20 29 (20 .	29: unchanged	installation	and connec	ction dimer	nsions)				2X
Sizes							NG				•
05 BG2							5				005
							6				006
							8		,		008
BG3							11				011
							13				013
							16				016
Direction	s of rotation	l									
06 View	ed on drive s	haft					clockwise	е			R
							counterc	lockwise			L
Drive sha	fts										
07 Cylin	drical shaft v	with fitting key,	DIN 6885								E
Splin	ed shaft acc	ording to ISO 3	8019-1				16-4 97	16/32DP			R
							19-4 117	16/32DP			S
Line conn	ections										
08 Sucti	on and pres	sure port: SAE	flange connection	n according	to ISO 6162	2-1					07
Seals											
09 FKM	seals and FK	M shaft seal ri	ng, suitable for H	LP, HETG, F	HEES and HF	D hydrauli	c fluids				V
FKM	seals with N	BR shaft seal ri	ings, suitable for	HFC hydrau	ılic fluids						W
Mounting	flange										
		lange accordin	g to ISO 3019-1								U2
											•
11 Furth	er details in	the plain text									

Order example


PGH3-2X/016RE07VU2

Material number

R900951305

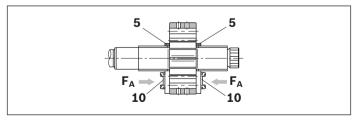
Not all variants according to the type key are possible! Please select the desired pump using the selection tables (page 6 to 8) or after consultation with Bosch Rexroth.

Functional description

Set-up

Hydraulic pumps of type PGH are gap-compensated internal gear pumps with constant displacement.

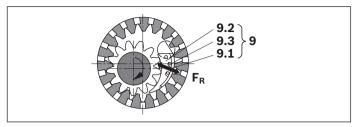
They basically comprise of housing (1.1), bearing cover (1.2), internal gear (2), pinion shaft (3), plain bearings (4), axial washers (5), end cover (6), mounting flange (7) and stop pin (8), as well as the segment filler element (9) consisting of segment (9.1), segment support (9.2) and the sheet seals (9.3).


Suction and displacement procedure

The hydrodynamically supported pinion shaft (3) drives the internally geared internal gear (2) in the displayed direction of rotation.

During the rotation, there is a volume increase over an angle of approx. 90° in the suction range. An underpressure results and fluid flows into the chambers.

The sickle-shaped segment filler element (9) separates suction and pressure chamber. In the pressure chamber, the teeth of the pinion shaft (3) engage in the space between the teeth of the internal gear (2) again. The liquid is displaced via the pressure channel (P).


Axial compensation

The axial compensation force F_A takes effect in the area of the pressure chamber and is generated with the pressure field (10) in the axial washers (5).

So the axial longitudinal gaps between the rotating and the fixed parts are extraordinarily small and ensure perfect axial sealing of the pressure chamber.

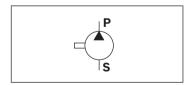
Radial compensation

The radial compensation force F_R acts on segment (9.1) and segment support (9.2).

Dependent on the operating pressure, the two segment filler elements (9.1) and (9.2) are pressed against the head diameters of pinion shaft (3) and internal gear (2).

The area ratios and the position of the sheet seal (9.3) between the segment and segment support are designed so that an almost leakage gap-free sealing between internal gear (2), segment filler element (9) and pinion shaft (3) is achieved.

Spring elements under the sheet seals (**9.3**) ensure sufficient contact pressure, also with very low pressures.


Hydrodynamic and hydrostatic mounting

The forces acting on the pinion shaft (3) are accepted by hydrodynamically lubricated radial plain bearings (4); the forces acting on the internal gear (2) by the hydrostatic bearing (11).

Gear tooth system

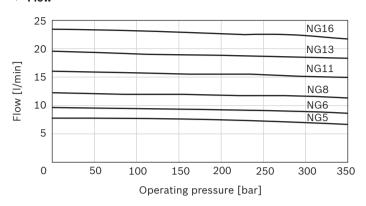
The gear tooth system is an involute tooth system. Its large meshing length results in little flow and pressure pulsation; these little pulsation rates considerably contribute to the low-noise running.

▼ Symbol

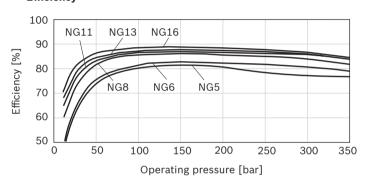
Technical data

Frame size		BG	2	2	2	3	3	3				
Size			NG	5	6	8	11	13	16			
Displacement	t, geometrical	Vg	cm ³	5.24	6.5	8.2	11.0	13.3	16.0			
Drive speed		n _{min}	rpm				600	·				
		n _{max}	rpm				3000					
Minimum driv	ve power required	p_{suppl}	kW				0.55	·				
Operating pre	essure, absolute											
Input		р	bar			0.8 2 (short	tly, upon start	0.6 bar)				
Output	permanent											
	Mineral oils	p_n	bar	bar 315								
	Special fluids	p _n	bar	210								
	intermittent ¹⁾											
	Mineral oils	p_{max}	bar				350					
	Special fluids	p _{max}	bar				230					
Flow (at n = 1450 rpm; p = 10 bar; q_v v = 46 mm ² /s)			l/min	7.5	9.3	11.8	15.8	19.1	23.0			
Weight		m	kg	4.3	4.4	4.6	4.8	5	5.3			
Shaft load	Shaft load				Radial and axial forces (e.g. belt pulley) only after coordination							
Type of moun	nting	Flange mounting										

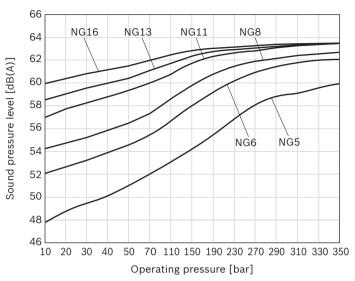
	Classification	Suitable seal design	Standards	Data sheet
	HLP, HLPD, HVLP, HVLPD	V	DIN 51524	90220
► environmentally compatible	HETG			
	HEES	V	ISO 15380	90221
	HEPG	_		
▶ water-free, flame-resistant	HFDU	V	100 12022	90222
	HFDR	v	150 12922	90222
► containing water, flame-resistant	HFC	W	ISO 12922	90223
	▶ water-free, flame-resistant	HLP, HLPD, HVLP, HVLPD ► environmentally compatible HETG HEES HEPG ► water-free, flame-resistant HFDU HFDR	HLP, HLPD, HVLP, HVLPD V HETG HEES V HEPG Water-free, flame-resistant HFDU HFDR	HLP, HLPD, HVLP, HVLPD V DIN 51524 ► environmentally compatible HETG HEES V ISO 15380 HEPG ► water-free, flame-resistant HFDU HFDR


Temperature range	°C	► Mineral oils	-10 +80; for other temperatures please consult us!
	°C	► Special fluids	-10 +50; for other temperatures please consult us!
Ambient temperature range	°C		-20 +60
Viscosity range	mm²/	's	10 300; admissible start viscosity 2000
Maximum admissible degree of contamination of the hydraulic fluid			Class 20/18/15
Cleanliness class according to ISO 4	406 (c)		

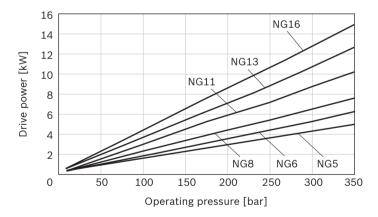
Notice


For applications outside these parameters, please consult us!

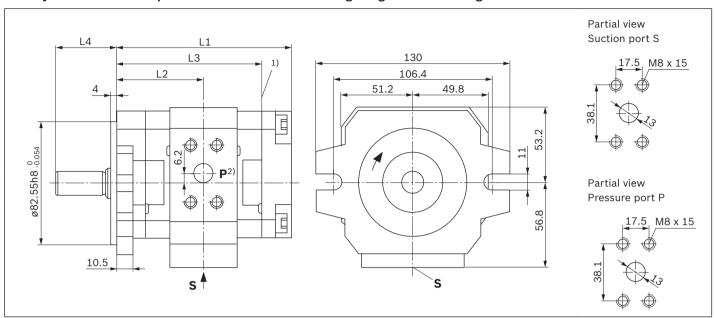
Average characteristic curve values of frame sizes 2 and 3


▼ Flow

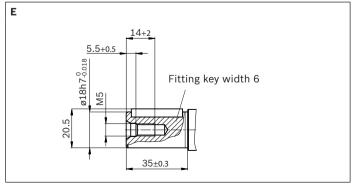
▼ Efficiency


▼ Sound pressure level

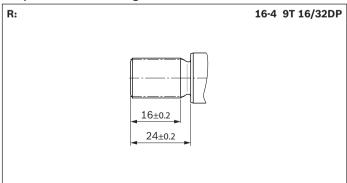
Notice


- ► Characteristic curves measured at n = 1450 rpm; $v = 41 \text{ mm}^2/\text{s}$; $\theta = 50 \text{ °C}$
- ► Sound pressure level measured in the sound measuring chamber according to DIN 45635, sheet 26; distance: Microphone pump = 1 m

▼ Drive power

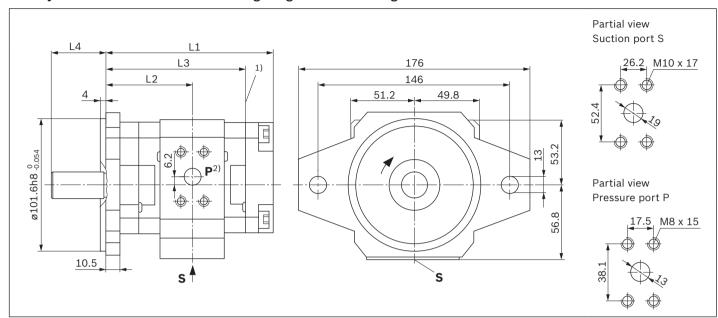

Dimensions of frame size 2

With cylindrical shaft or splined shaft and 2-hole mounting flange 82-2 according to ISO 3019-1

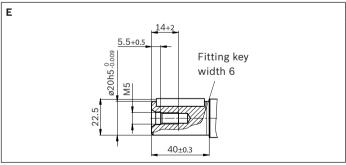

Туре	Material numbers	L1	L2	L3	L4	Suction port S ³⁾	Pressure connection P ³⁾		
005 R E 07VU2	R900968999	- 110	54.2	89.5					
L 07702	R900703725	110	54.2	69.5					
PGH2-2X/ 006 R E 07VU2	R900951301	- 112.5	55.5	92	41	DNI12 (CAE 1/2")	DN13 (SAE 1/2")		
L 07/02	R900961547	112.5	55.5	92	41	DN13 (SAE 1/2")	DN13 (SAE 1/2)		
008 R E 07VU2	R900951302	116	57.3	95.5					
L 07V02	R900961548	116	57.3	95.5					
005 R 07VU2	R900972378	- 110	54.2	89.5					
L 07702	R900703727	110	54.2	69.5		DN13 (SAE 1/2")			
PGH2-2X/ 006 R 07VU2	R900961549	- 112.5	55.5	92	31.5		DN13 (SAE 1/2")		
L W 07 V 02	R900961550	112.5	55.5	92	31.5		DN13 (SAE 1/2)		
008 R 07VU2	R900961551	- 116	57.3	95.5					
L 07702	R900961552	110	51.5	90.0					

▼ Cylindrical shaft with fitting key DIN 6885

- $_{\mbox{\scriptsize 1)}}$ With multiple pumps, the combination part will start from here
- 2) The figure shows pumps with clockwise rotation; with pumps with counterclockwise rotation, the pressure port is on the opposite side!


▼ Splined shaft according to ISO 3019-1

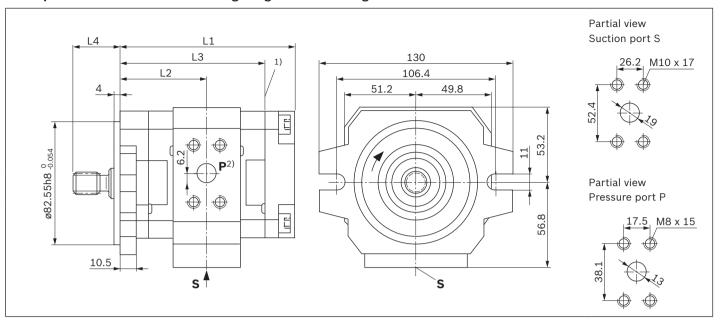
3) SAE flange connection according to ISO 6162-1


Dimensions of frame size 3

With cylindrical shaft and 2-hole mounting flange 101-2 according to ISO 3019-1

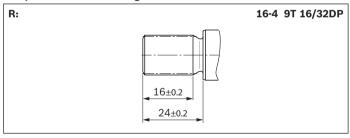
Туре	Material numbers	L1	L2	L3	L4	Suction port S ³⁾	Pressure connection P ³⁾	
011 R	R900951303	- 128	66.5	107.5				
L 07702	R900961553	120	00.5	107.5		DN25 (SAE 1")		
PGH3-2X/ 013 R E 07VU2	R900951304	100	69	112.5	41		DN13 (SAE 1/2")	
PGH3-2X/ 013 — E 07VU2	R900961554	- 133			41		DN13 (SAE 1/2)	
R F 077/412	R900951305	100	71 5	117.5	_			
016 E 07VU2	R900961555	- 138	71.5	117.5				

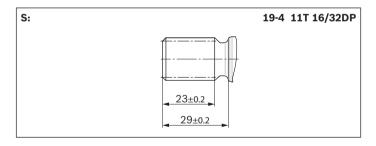
▼ Cylindrical shaft with fitting key DIN 6885



¹⁾ With multiple pumps, the combination part will start from here

²⁾ The figure shows pumps with clockwise rotation; with pumps with counterclockwise rotation, the pressure port is on the opposite side!


³⁾ SAE flange connection according to ISO 6162-1


With splined shaft and 2-hole mounting flange 82-2 according to ISO 3019-1

Туре	Material numbers	L1	L2	L3	L4	Suction port S ³⁾	Pressure connection P ³⁾	
011 R 07VU2	R900961556	- 121.5	60	101				
L R 07702	R900961559	121.5	60	101		DN25 (SAE 1")		
PGH3-2X/ 013 R 07VU2	R900961557	- 126.5	62.5	106	31.5		DN13 (SAE 1/2")	
PGH3-2X/ 013 — R 07VU2	R900961560	126.5	62.5	106	31.5			
016 R 07VU2	R900961558	- 131.5	65	111				
L R 07702	R900961561	131.5	00	111				
PGH3-2X/ 016 R S 07VU2	R901281698	121 5	65	111	37	DN25 (SAE 1")	DN12 (CAE 1/2")	
- S 07702	R901465533	- 131.5	65	111	31	DNZS (SAE I)	DN13 (SAE 1/2")	

▼ Splined shaft according to ISO 3019-1

 $[\]ensuremath{\mathtt{1}}\xspace$ With multiple pumps, the combination part will start from here

²⁾ The figure shows pumps with clockwise rotation; with pumps with counterclockwise rotation, the pressure port is on the opposite side!

 $_{\mbox{\footnotesize 3)}}\,$ SAE flange connection according to ISO 6162-1

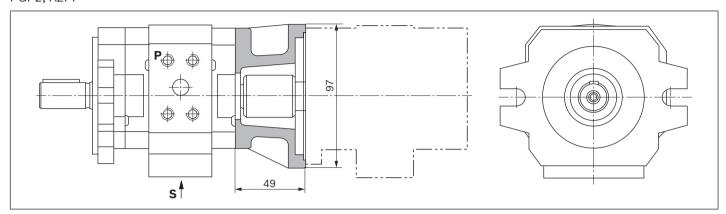
Multiple pumps

All internal gear pumps of type PGH can be combined, every pump is equipped with an output gear tooth system. The possible combinations and the material numbers of the required combination parts are available in the following table.

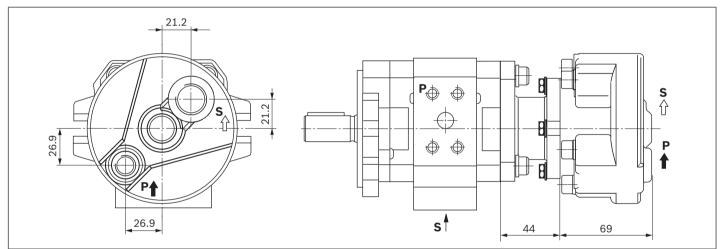
Downstream pump	Upstream pump	
	PGH2-2X	PGH3-2X
PGH2-2X/RU2	R900886137	R900886137
PGH3-2X/RU2	R900886137	R900886137
PGP2-2X/JU2	R900886137	R900886137
PGF2-2X/JU2	R900886137	R900886137
AZPFRRB	R900886137	R900886137
PR4-1XWA	R901015657	R901015657
PGZ4-1X/TU2	R901405441	R901405441
PGZ5-1X/TU2	R901405441	R901405441

Ordering code

0	1 02		03		04		05		06		07	08	09	10		11	12		13	14	15
	1 02	1	T	+		/		+	T	1	T			<u> </u>	+	T	1	+	T	14	T
																				!	
	e 1)																				
01	2-fold																				P2
	3-fold																				Р3
	1			4)																	
02	Series	of the f	irst pur	mp ¹⁾																	
0.0	To:	r . 1 . c.		1)																	
03	Size o	f the firs	t pump)+/																	
0.4		6.11		1	1																
04	Series	of the s	econd	pump	.,																
0.5	C:			1)																	
05	Size o	f the sec	cona pu	ımp-																	
06	Sorias	of the t	hird n	(mp1)																	
00	Series	oi the t	ıııa pu	ιιιρ- [,]																	
07	Cizo o	f the thi	rd num	n1)																	
				ρ- [,]																	
Dir e		of rotation		.									ckwise								R
00	viewe	a on and	ve silali	L										ockwis							L
D.::.	us shafi		first mi										arreer er	OCKWIS							
	1	of the frical sha			kev. D	IN 688	35														E
		d shaft a										16-	4 9T	16/32	DP						R
												19-	4 11T	16/32	DP						s
Line	e conne	ction of	the fir	st pun	пр																
		n and pi				inge co	nnect	ion ac	cordin	g to IS	O 6162	1									07
Driv	ve shaf	of the	second	l pump	1)																
11	Cylind	rical sha	aft with	fitting	key, D	IN 688	35														Α
	Spline	d shaft a	accordi	ing to I	SO 301	19-1						16-	4 9T	16/32	DP						J
														16/32							R
												19-	4 11T	16/32	DP						Т
		ction of			oump ¹⁾																
12	Suctio	n and pi	ressure	port																	
_		of the																			
13		rical sha					35														Α .
	Spline	d shaft a	accordi	ng to I	SO 301	19-1						16-		16/32							J
														16/32 16/32							R T
<u>. </u>		-4! *			1)							13-	- 11I	10/32	וט						
-		ction of n and pi			mp [±] ′																
	1	lange of mountin				to 180	3∩10-	1													U2
13	2-1101e	mountil	iig iiailg	se accc	nuilig l	130	2013-														- 02

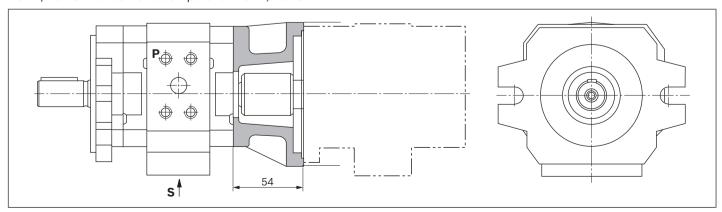

¹⁾ For detailed information, see type key / data sheet of relevant pump

Dimensions


The dimensional drawings show the front pump and the combination part. $^{1)}$

PGH2/PGH3

PGH2/PGH3 with combination part for PGH2, PGH3, PGF2, PGP2, AZPF



PGH2/PGH3 + R4-Mini

PGH2/PGH3 + PGZ

PGH2/PGH3 with combination part for PGZ4, PGZ5

Dimensions of the single pumps see page 6 to 8 or the corresponding data sheets of the back pump.

Project planning information

When using internal gear pumps, a manual, switchable or automatic bleeding option must moreover be provided. The bleeding point for manual bleeding must be provided in the pressure line in front of the first valve or check valve so that depressurized bleeding is possible.

Technical data

All specified technical data depend on production tolerances and are valid at certain boundary conditions. Please note that consequently, fluctuations are possible and that with certain boundary conditions (e.g. viscosity), the technical data may also change.

Characteristic curves

When designing the drive motor, please observe the maximum application parameters possible shown by the characteristic curves presented on page 5.

Sound pressure level

The sound pressure levels shown on page 5 were measured in the style of DIN 45635, Sheet 26. This means that only the noise emitted by the pump is shown. Ambient influences (place of installation, piping, etc.) were not included.

These levels always refer to only one pump. With internal gear pumps, the excitation of valves, pipelines, machine parts, etc. is very low due to the little flow pulsation (approx. 2 to 3%).

With unfavorable influences, the sound pressure level at the place of installation of the power unit may, however, still be 5 to 10 db(A) higher than the values of the pump itself.

Multiple pumps

- ► The same general technical data apply as for single pumps (see page 4).
- ► The combined pumps must all have the same direction of rotation.
- ► The pump with the largest torque should be intended as first pump.
- ► The maximum through-drive torque must be checked by the project planner for every application. This is also true for already existing (coded) multiple pumps.
- ► The total of the torques in a multiple pump must not exceed the maximum drive torque.
- ▶ Joint aspiration is not possible.
- ▶ Before operating pump combinations with different hydraulic fluids, please consult Bosch Rexroth.
- ► Medium and back pumps must be equipped with drive shafts version "R" (geared).
- ► The drive torque of a pump stage is calculated as follows:

$$T = \frac{\Delta p \cdot V \cdot 0.0159}{\eta_{hydr-mech}}$$

Key	
Т	Torque [Nm]
Δр	Operating pressure [bar]
V	Displacement [cm³]
η	Hydromechanical efficiency

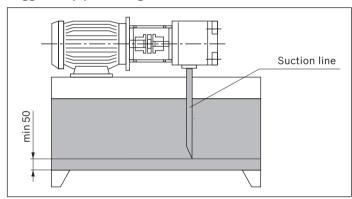
▼ Maximum admissible torques [Nm]

Туре		Drive torque		Output torque
	Cyl. shaft E	Splined shaft R	Splined shaft S	
PGH2	100	80	-	75
PGH3	110	80	155	75

Pump safety block

For limitation of the operating pressure or (and) for the solenoid-actuated unloading of the operating pressure, Bosch Rexroth recommends pump safety blocks according to the data sheets 25880 and 25891.

Installation information


Fluid tank

- Adjust useful volume of the tank to the operating conditions!
- ► The admissible fluid temperature must not be exceeded; include a cooler, if necessary.

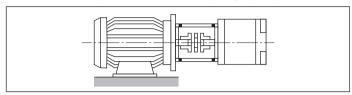
Lines and connections

- Remove protective plugs from the pump.
- ► Select the inner width of the pipes according to the connections (suction speed 1 to 1.5 m/s).
- ▶ Inlet pressure see page 4.
- ▶ Thoroughly clean pipelines and fittings prior to installing.

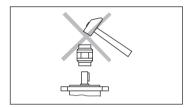
Suggested pipe routing

- ► Return fluid must not be directly sucked in again under any circumstances, i.e. select the largest distance possible between suction and return line.
- Suction line and return flow outlet must always lie clearly below the oil level.
- ► Ensure suction-tight assembly of the pipelines.

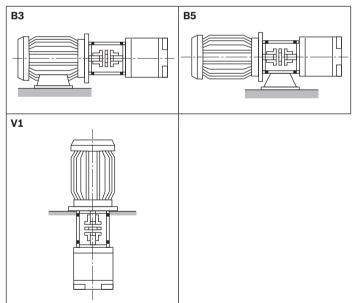
Filter


If possible, use return flow filters or pressure filters. (Only use suction filters in connection with underpressure switch / clogging indicator).

Hydraulic fluid


- Please observe our regulations according to data sheet 90220.
- ▶ Bosch Rexroth recommends brand hydraulic fluids.
- ► Different hydraulic fluid types must not be mixed as this might result in degradation and deterioration of the lubricity.
- ► According to the operating conditions, the hydraulic fluid must be renewed at certain time intervals. Residue should also be cleaned from the hydraulic fluid reservoir at this time.

Drive


Electric motor + pump carrier + coupling + pump

- No radial and axial forces on the pump drive shaft admissible!
- ▶ Motor and pump must be exactly aligned!
- ► Always use a coupling that is suitable for compensating shaft displacements!
- Avoid axial forces when attaching the coupling, i.e. do not assemble it using impact tools or by pressing it on! Use an internal thread of the drive shaft!

Installation positions

Commissioning information

Preparation

- Check whether the system is thoroughly and properly installed.
- Only fill in hydraulic fluid through filters with the required minimum retention rate.
- ► Completely fill the pump with hydraulic fluid through the suction or pressure pipe.
- ► Check the direction of rotation of the motor for compliance with the direction of rotation according to the pump type.

Bleeding

- Manually open the bleed port at the system or switch to depressurized circulation according to the operating instructions of the system. During the bleeding, depressurized discharge of entrapped air must be ensured.
- ► To bleed the pump, switch the motor on and immediately off again (jog mode). This process is to be repeated until complete bleeding of the pump is ensured.
- Close the manually opened bleed port again.

Commissioning

- ► If complete bleeding of the pump has been ensured, switch on the motor. Let the pump run at zero pressure until the system is completely bled. For system air bleeding, observe the operating instructions of the system.
- ► Commission the system according to the operating instructions of the system and load the pump.
- ► After some operating time, check the hydraulic fluid in the tank for bubble or foam formation at the surface.

Operation

- ▶ During operation, look out for changes in the noise characteristic. Due to the heating of the hydraulic fluid, slightly increasing noises are normal. A considerable increase in noise or short-time stochastic noise changes may be an indication of sucked in air. If suction pipes are too short or the filling level heights of the hydraulic fluid are too low, air may also be sucked in through a vortex.
- ► Changes in operating speeds, temperatures, increasing noises or power consumption are an indication of wear or damage at the system or the pump.

Re-commissioning

- Check the pump and system for leakage. Leaks are an indication of leakage below the hydraulic fluid level. An increased hydraulic fluid level in the tank is an indication of leakage above the hydraulic fluid level.
- ► If the pump is arranged above the hydraulic fluid level, the pump may run empty due to leakage, e.g. a worn shaft seal ring. In this case, the system must be bled again upon re-commissioning. Initiate the repair.
- ► After repair and maintenance works, bleeding is again necessary.
- ▶ If the system is intact, switch on the motor.

General information

- ► The pumps delivered by us have been checked for function and performance. The warranty only applies to the supplied configuration.
- ► Repair works may only be carried out by the manufacturer or their authorized dealers and agencies. The claim to warranty expires if the product is incorrectly repaired, assembled, commissioned and operated, not used as intended and/or handled improperly.
- ► Opening the internal gear pump or extending or modifying it will invalidate the claim to warranty.

Notes

- ► Assembly, maintenance and repair of the pump may only be carried out by authorized, trained and instructed personnel.
- ► Pump may only be operated with the admissible data (see page 4).
- ▶ Only operate the pump when in good working order.
- ▶ For all works at the pump, depressurize the system!
- ► Unauthorized modifications or changes which affect the safety and function are not admissible!
- ► Apply protective devices (e.g. coupling guard) and/or do not remove existing protective devices!
- ► Always ensure tight seat of all mounting screws (Observe the specified tightening torque)!
- ► The generally valid safety and accident prevention regulations must be imperatively complied with!

PGH | Internal gear pump Commissioning information

16

Bosch Rexroth AG

Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 9352 / 40 30 20 my.support@boschrexroth.de www.boschrexroth.de © All rights reserved to Bosch Rexroth AG, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The data specified above only serve to describe the product. No statements

concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.